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(Almost) Gibbsian Description of the Sign Fields
of SOS Fields
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An example is presented of a measure on a lattice system which has a measure
zero set of points (configurations) where some conditional probability can be
discontinuous, but does not become a Gibbs measure under decimation (or
other) transformations. We also discuss some related issues.
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1. INTRODUCTION

In recent years (see refs. 52, 53, 51, 48, 49, 33, 55, 29, 43, 7, 45, 39, 40, 44,
54, 27 and references therein), various measures on finite-spin lattice
models have been found which are not Gibbs measures in a strict sense.
These measures can occur in physically rather natural set-ups, for example
by applying single Renormalization Group maps to Gibbs measures (see
also the fundamental work of refs. 24, 25, 28), as scaling limits of such
maps, as stationary measures under some non-equilibrium evolution, or by
directly constructing them.

As for many applications the availability of an “effective Hamiltonian”
is desirable, or even essential, and also because the theory of Gibbs
measures (a good description of which is in ref. 19) has proved to be such
a versatile and fruitful tool in various domains, beside statistical mechanics
where it originated (ergodic theory and dynamical systems, pattern
recognition, (Euclidean) field theory...), a more general version of Gibbsian
theory seems worth looking for.
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There have been essentially two approaches in which some of the
non-Gibbsian counterexamples might be brought back into the Gibbsian
fold. One, which was first suggested by R. L. Dobrushin,® and which was
further discussed and studied in refs. 37, 13, 40, 41, 54, 6, 44, 35, 38
considers a measure on a finite-spin lattice system to be weakly non-
Gibbsian—or what we would call almost Gibbsian—if the set of boundary
conditions at which some conditional probability is essentially disconti-
nuous (this set is empty for Gibbs measures) is non-empty but has measure
zero; or, in a presumably weaker version, the set of boundary conditions
on which the—to be constructed—interaction diverges has measure zero.
This approach is suggested by an analogy with infinite-range unbounded-
spin systems. If the set of such “bad” boundary conditions has positive
measure, we will say that the measure is strongly non-Gibbsian. (As a side
remark we mention that another class of models where one has Gibbs
measures defined on a “large” set of well-behaved configurations but “exotic”
behavior on its complement, are Ising—thus bounded-spin—models for
spin-glasses, with very long-range (square summable but not absolutely
summable) random pair interactions at high temperatures.!” 18 36.57

In the other approach, which is due to F. Martinelli and E. Olivieri,*% ¥
one studies what happens if one applies sufficiently many decimation trans-
formations to a non-Gibbsian measure. If the measure remains non-
Gibbsian, we will call it a robustly non-Gibbsian measure, otherwise (in
case the transformed measure becomes Gibbsian) the non-Gibbsianness
will be said to be non-robust.

There are examples known (for example the decimated Ising model
at low temperature in a weak field) in which the non-Gibbsianness is
both weak and non-robust, and also examples (J. van den Berg, and
C. Maes-K. Vande Velde, private communication and ref. 36) in which one
has a one-dependent measure in which the non-Gibbsianness is strong but
non-robust (after decimation the measure is a product measure, which is
trivially a Gibbs measure).

Here we present some examples having the opposite property, that is,
the measure, due to its anomalous large deviation properties, does not
become Gibbsian under decimation (or more general transformations),
thus it is robustly non-Gibbsian, but it has a measure zero set of discon-
tinuity points, hence at the same time the non-Gibbsianness is both robust
and weak.

Comment. As for the Renormalization Group origin and meaning
of many of these non-Gibbsian results, we suspect that in some of these
examples it may in fact be the case that any description in terms of finite-
spin variables runs into some kind of trouble, and it is not clear to us at
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present that the “almost Gibbsian” framework will be the most appropriate
one to implement Renormalization-Group arguments in. Thus the conclu-
sion (Bricmont’s title of his contribution to the January 1997 Palaiseau
meeting on Gibbsian versus non-Gibbsian measures, describing the results
of ref. 6) that “Renormalization-group pathologies are not so bad” seems
too early to draw, if it is founded only on the possibility of a description
of some of the non-Gibbsian measures in terms of almost surely defined
interactions, In other words, the renormalization-group pathologies which
were found®*2>2%33) in trying to renormalize (Ising) spin-Hamiltonians
may indicate that the proper objects to renormalize are different objects
altogether (probabilities, contour Hamiltonians, or whatever the case may
be, depending on the physical problem at hand), even if the Gibbsian
formalism also has a wider validity than the usual treatments suggest.

2. THE EXAMPLE: THE SIGNS OF THE SOS-MODEL

We consider the (three-valued) sign-field of a 2-dimensional SOS-
model at low temperatures. Similar arguments apply at suffiently low tem-
peratures in higher dimensions (where one is always below the roughening
transition). Our arguments apply also to the case where one considers a
discrete Gaussian instead of an SOS-model.

Let the SOS-configuration space be {Z}Z’. Consider the Gibbs
measure u, for the Hamiltonian

H=Y IS5l (1)
< >
at sufficiently large inverse temperature f, corresponding to the zero
boundary conditions. Then the interface is centered at height zero (as we
are below the roughening transition, our measure exists).
We define ¢,=sign S;, where sign 0=0. We now have the following
result:

Theorem 1. The marginal measure u' of the g-variables, defined
by o, is an example of a measure whose non-Gibbsianness is both weak
and robust.

Proof. First we show the (at worst) weak non-Gibbsian property,
i.e., the measure #' has conditional probabilities which for some version are
continuous on a set of configurations of full measure.

A configuration is a point of continuity—in the product topology—if,
considered as a boundary condition, changing it sufficiently far away does
not influence the distribution of the variables in a fixed finite volume by
much (sometimes this is referred to as quasilocality, for finite-spin systems
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continuity and quasilocality are equivalent). In our example the influence
from boundary conditions can be completely shielded off for a set of
configurations of measure one. Namely, we observe that in the S-variables
there is in the Peierls regime'®# an ocean of zeroes, with islands in it, for
typical (uq-almost all} configurations. As the zeroes in the S-variables and
in the g-variables coincide, any finite volume will, also with x'-probability
one, be enclosed by a *-connected contour of zeroes. Changing the
configuration outside this contour has no influence whatsoever on what
occurs inside the contour. (In other words, instead of having, as for Gibbs
measures,*” surely the almost Markov property, here we have almost
surely the—local—Markov property.)

The second thing we need to prove is that the measure ' is robustly
non-Gibbsian. To do this, we want to show that it has anomalous large
deviation properties, in the sense that the probability of finding all a-spins
to be plus in some volume decays slower than exponentially with the size
of the volume. For this we apply a variation of some essentially known
arguments. First we observe that shifting the spins in, say, a square volume
A of size N by N by a height difference n costs an energy #n x |4N]|.
Moreover, conditioned on this shifted average, the fluctuations in the
square around this shifted height », with high probability are smaller than
O(In N) ([ 4], Appendix 3, part 2). By choosing for example n = O(N*), we
find that the probability of finding all o-spins to be plus decays not faster
than exp { — N'*¢}.

A weaker version of a similar result has been obtained by J. Lérinczi
([34] and private communication).

By similar arguments as in refs. 30, 11, and 53, Section 4.4, it then
follows that u! cannot be a Gibbs measure; neither can it become so under
either deterministic®®® or stochastic® renormalization group transforma-
tions.

3. THE INTERACTION FOR THE SIGN FIELD

Once we know that at u,-almost all configurations all the conditional
probabilities are continuous, we can try and write them in a Gibbsian
form for an (almost everywhere convergent) interaction, similarly to what
was done by Dobrushin, Maes-Vande Velde, and Bricmont-Kupiainen—
Lefévere in different examples.

As a side remark we note that one might have an almost surely con-
vergent interaction and at the same time nowhere continuous conditional
probabilities; in fact this is the typical situation for infinite-range unbounded-
spin systems where changing the boundary condition to a bad one
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(a rapidly increasing one) far away, might strongly influence the distribu-
tion at the origin, whatever happens in intermediate regions.

In the cases mentioned above, to get an almost everywhere convergent
(exponentially decaying) interaction or relative energy was rather com-
plicated, as one needs to control cluster expansions which cannot be
uniformly convergent (that is, uniformly in each configuration of the
system), a problem which is similar to what happens in the Griffiths phase
of disordered systems®® (where the convergence is not uniform in the
disorder configuration) or also the high-temperature phase of models with
many-body interactions,’®*® and which was solved there by various
methods (compare refs. 16, 1, 12, 5, 17, 20, 21, 22).

In our case this problem turns out to be much simpler, as for the
above indicated set of configurations of uy-measure 1, we not only have
continuity of the conditional probabilities, but we even have the Markov
property. This allows us in a simple way to obtain a lattice gas (or
vacuum) potential, with the all-zero configuration playing the role of the
vacuum. Indeed, let us define the interaction to be just the energy of a
particular island configuration. Here the island is any finite connected set.
The energy is obtained by taking the logarithm of the ratio of the two
probabilities: one is the probability of the finite island configuration of
pluses and/or minuses (delimited by the ocean of zeroes from the outside
and may be also by the lakes of zeroes from the inside), while the second
one is the probability of the all-zero configuration on the island, both
computed with zero boundary condition around the island. By definition,
our interactions are nonzero only on such islands. As the configurations
consisting of finite islands in a sea of zeroes have full measure (because we
are in the Peierls regime) we are done.

The resulting interactions are somewhat reminiscent of those of the
(one-dimensional) Fisher-Felderhof cluster models, the statistical mechanics
of which has been found to have many unusual properties, and which are
well-known to fall outside the usual Gibbsian (DLR) formalism (see for
example refs. 14, 15). In the theory of interacting particle systems such
cluster models belong to the reversible (but non-attractive) case of “nearest
particle systems” (ref. 31, Chap. 7). It was observed that non-trivial
invariant measures may live on a reduced configuration-space, because of
the existence of one or a few ( = countably many) dangerous configurations.
Dangerous configurations are configurations containing one or two (semi-)
infinite clusters. Our example could be viewed as a higher-dimensional
generalization of such cluster models. (Our islands correspond to the
clusters). One should note that a “particle” in a nearest particle system
corresponds to a hole in a cluster model and a zero in our example; they give
the values of the variables which can shield off the influence from the outside.
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The nearest particle condition (which corresponds to the fact that
clusters—islands—at distance two or more do not interact) is what we
have called the almost surely holding Markov property.

An unusual property of such models is that they may have a weakly
Gibbsian high temperature measure, but a degenerate measure at low
or intermediate temperatures, namely a “frozen” one, which is supported
on one or finitely many configurations. Related to this is the possible
occurrence of “ideally metastable” frozen states,*®’ which cannot happen in
the ordinary Gibbsian formalism.

Connected to this is that, although in our example the existence of a
nontrivial measure being concentrated on the finite-island configurations
follows by construction, in general the question for which choices of finite-
island-configuration probabilities there exist such a measure is probably
not easy to decide.

4. A GENERAL EXAMPLE

The goal of this section is to present a further example, which shows
that the passage from the Gibbs fields to the almost Gibbs fields brings
with it some new properties, which show that the almost Gibbs fields have
to be treated with more care than their usual counterparts. More specifi-
cally, we are going to argue that the relaxation of the property of con-
tinuity of the conditional probabilities to that of a.s. continuity of them is
not so innocuous as one would like to think (the authors included) and
leads to the appearance of some features not encountered in the realm of
the proper Gibbs fields.

Motivated by the analysis of the field of signs of the SOS-model, we
present in this section a general construction of a class of almost Gibbs
fields, which are not classical Gibbs fields. We present here the simplest
possible version of this general construction. As the reader will see, as soon
as one does not have to ensure the convergence of the relative energy for
all boundary conditions, all the constructions become quite simple. Our
example will be a class of random fields o = {5,} on Z% d>2 with values
0 or 1, ie. a lattice gas model. To define it, we need some preliminary
notions.

A subset C<Z? will be called connected, iff the subset of R¥ formed
by the union of closed unit cubes centered at the sites of C is connected.
Two points x, yeZ¢ will be called neighboring, if the set {x, y} <74
is connected. A sequence of neighboring points will be called a path.
A boundary 9C of a set C is the set of all points in the complement C¢,
which have at least one neighbour in C. A connected finite set will be
called a polymer. A connected infinite set will be called an infinite polymer.
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A polymer Cc 7¢ will be called a c-polymer iff the complement C¢ is also
connected. The boundary of a c-polymer is connected as well. If the
complement C¢ is disconnected, then the polymer C is “hollow”, and will
therefore be called an h-polymer. The support supp(C) of the polymer C is
defined as the set C w dC. The core of the polymer B, which will be denoted
by core (B), is by definition the smallest c-polymer, containing B. If for a
finite set 4 we have 4 =supp (C) for some c-polymer C, then it is easy to
see that such a c-polymer C is uniquely defined by A.

There is an evident one-to-one correspondence between the subsets of
the lattice and the configurations o. In what follows we will use the nota-
tion %(o) to denote the set of polymers of the configuration o.

We remind the reader that the Gibbs potential % is a family of func-
tions, # ={U,(04), A< Z% |4] < o}, where g, € {0, 1} is any configura-
tion on 4. We are going to introduce what we will call polymer potentials:
We say that the Gibbs potential # is a polymer potential, if for some
constants k, K, 0 <2k < K< oo the following holds:

uc if A =supp(C) for some c-polymer C, and o, = (ind )| 4,
Ugdoys)=<ve if A=supp(C) for some h-polymer C, and o, =(ind )| 4,
0  otherwise,

where the parameters u., v satisfy the bounds:

kloC| <ucs< K |0C| for the c-polymer C

vez K |core(C) for the h-polymer C

(Here ind is the indicator function of C.) In fact, we need to suppose more
about the function u. defined for all c-polymers C. To this end let p be
some fixed integer, and V, be a cubic box centered at the origin. Let b(-)
be a nonnegative function on €, , which vanishes exactly for two con-
figurations: 6 =0 and o= 1. We suppose that the function u. admits the
following representation:

Uc= Z b(ind - +X)|V,,)E 10C1, (2)

xez¢

Clearly, such a function takes values which are of the order of the boundary
|0C| of the polymer C. But in addition to that, relation (2) ensures that
this boundary term is a sum of local terms along OC. Note that the
“length” |C] is itself a functional which admits such a representation.
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If ¥ is now any finite set in Z% and o,e 2, is any configuration
on V, we define the energy H”(s,) by

Hh(a'y)= Z Ugdoayly—h Z g,

A<V teV

The real parameter 4 is called the magnetic field (or chemical potential). If
in addition a configuration o,. is specified in the complement of V, which
is called a boundary condition, we define the relative energy H”(c, | a.) by

Hh(JVIUV‘)= Z Us(apuop)ld—h z g,

ANVAY tev

Note that the infinite clusters of particles, which might appear in the
configuration o,uUag,., do not contribute to the relative energy. The
probability distribution ¢4" on @, given by

exp{ — fH" (o, | 0y0)}
Z(V, B, h,op)

%"

(Oy|ay) =

is called specification, and the normalizing factor Z(V, 8, h, 04.) is the
partition function. Note that the specification is a discontinuous function of
gy.: every boundary condition g, with an infinite cluster of particles is a
point of discontinuity. In case of the boundary condition ., which is
identically zero, we will use the shorter notation ¢%%(a ) for the specifica-
tion, and will call the probability distribution g% *(c ) the Gibbs distribu-
tion in V with zero boundary condition. The measures ¢%%(.), viewed as
measures on the set 2,4, form a compact family, parametrized by the
volumes V. Therefore for every value of the parameters § and 4 it has at
least one limit point, as a weak limit of measures on a compact set. For this
no continuity conditions are required. Let us choose such a limit point for
every 8, h and denote it by u#”.

Theorem 2. Suppose that the temperature is low enough, i,
f> fo>> 1. Then there exists a value hy = hy(f) > 0 of the magnetic field,
such that:

(1) For 0 <h<hy the measures u#” are nontrivial. That means that
the probability u**(a,,) of the appearance of a configuration ¢ in a finite
box V is positive for any V and a,.

(2) For all h>h, the measures u”* are concentrated on a single
configuration g = 1.
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Proof. We begin by introducing the ensemble of the exterior cores.
A c-polymer D will be called an exterior core of the configuration ¢, €2,
iff D is a maximal set inclusionwise, which can be written as D=
U{C'_e@(,,y);co,e(q)nco,e(cj#g}core(C,-). In particular, the exterior core of
the origin, Dy = Dy(o}), is the union:

Dyloy) = U core(C)

{Ce€(oy): 0ecore(C)}
Clearly, there is a polymer C, of the configuration o, such that
core(Cy) = Dy(a )

In what follows, we will use the notation % = 2(0) to denote the set
of all exterior cores of the configuration ¢. Our first step will be to write
down the distribution of the exterior cores, induced by the measures ¢%”.

Lemma 3. If #is large enough, then there exists a functional ¢ on
the set of all exterior cores, such that for any ce 2,

a0 Do) =2)=E(V,¢,h)"" [] exp{ —¢(D)+phu(D)} (3)

De?
The functional ¢ is a z-functional, which means that
(D)= |0D|

with t=1(f)—> o0 as f— o0, and E(V, ¢, h) is a partition function.
Moreover, as a functional of the boundary of the core, ¢ is almost local,
and the following representation holds:

¢(D)=f|0D|, + g#(D)
The function g has the following properties:
for any x, we have g#(D)= g#(D + x);
|8”(D)| <exp{ —kp |D|}.

Proof. First we will define the functional ¢. Let D be a finite c-polymer,
I'=32D be its boundary, and V be a box containing D. Consider the parti-
tion function

Z(DY=Z(V,D, B, h,a,.=0)= Y  exp{ —BH" 0y | aye)}

ﬂyeg({D})
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which is calculated over all configurations ¢ which have D as their only
exterior core. Define ¢(D)=¢(I") by

¢(I')= —In Z(D) + fh | D|

The reason for our lemma to hold lies in the simple structure of the
energy function; the main contribution to the above partition function
comes from the configuration o, € Q({D}) which is identically +1 inside
D. We have:

Z(D)=exp{ — flup—h |D|)}

+ ) exp{ —fvc—h|CD}

C: Cis an A-polymer
core(C)=D

—exp{ i DI} [exp{ — Pup)

+ X exp{ —/f’(vc+h(|D|—lCI))}}

C: Cis an A-polymer
core(C)=D

Denote the last sum by Z"!¥(D). It can be bounded from above by

z"™(D) = 2 exp{ — Blvc+h(|DI = 1C)}
C: Cis an h-polymer
core(C)=D

<2'P exp{ — 26k | DI}
which completes the proof. ||

Once we have the representation (3), the proof of Theorem 2 will be
complete provided we will demonstrate that in the contour model (3) the
following holds: for & < h, the typical configuration consists of small exter-
nal contours, while for & > h, it contains one large external contour which
occupies essentially the whole box V. This is enough, since, as the next
lemma shows, the following holds: given the polymer C,, the probability of
seeing a zero inside core(C,) goes to zero as the polymer C, gets bigger.

Lemma 4. Forall A>=0

4%"(a,=0|Do(0y) =D) <exp{ — fe(h) |D|}

where the function ¢(A) > 0, uniformly in 4> 0.
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Proof. The proof is easy, due to the very simple structure of the
potential. First of all, the conditional distribution ¢&*(.| Dy(a,)= D)
coincides with the distribution ¢%%(-| Do(op) = D). Consider the con-
figuration ¢ = 1. Then

H"(o})<K|0D|—h |D|

For o€ 2, different from o, and satisfying the condition Do) =D we
have

H'y(0)=k |D|—h|D|
Since the number of configurations in @, is 2'°!, we have:
g5Map#a} | Dy(op)=D)<exp{ —(kf—In2)|D|+K D[} 1|

The last thing left is the study of the contour ensemble (3). In the
special case of the function &, when the values |I"|, are equal to the length
of the contour I, this study is a subject of ref. 38. The general case can
be treated exactly in the same manner. The main idea is to replace the
ensemble of external contours (3) by the usual contour model of Pirogov—
Sinai theory (maybe with a positive parameter). That amounts to solving
the system of equations

exp{[ fh— f(Y)1* o(I")} exp{ —y(I")} Z(Iny(I') | ¥)
—exp{ —¢(I") + fho( 1)} (4)
where [a]* =max{a, 0}. Here y =y, , is the unknown contour func-
tional, f() is its free energy, and Z(Int(y) | ) is the usual partition func-

tion of the contour model. In addition to the proof of the existence of the
solution of (4) we need to know two properties of it:

1.  is a t-functional, that is Y/(I") =7 ||, with 1 — o0 as f— c0;

2.y is almost local, in the following sense: there exists a function
G(x, I'), defined for all contours I' and all sites x e d(Int(I")), such that G
is translation invariant and

|G(x, T'1) — G(x, I';)| <exp{ —cdist(s, I'y AT)}

with ¢ — oo as f— oo, while

W)= Y Gx,I+aul)

xed(Iny(I"))

with ¢ = 0.



364 van Enter and Shlosman

(Under the second property one is able to show that it is very unlikely
that a contour develops a long and thin protuberance—the statement,
which is the part of our theorem. In general this is not the case.) The
constructions of [38] can be carried on in the present situation, and they
enable one to prove all the above statements. In particular, the value hy §)
is given by the relation:

ho( B) =inf{h: fh= f(Y)} (5)

For the values of h > hy(f) our system is described by the contour model
with a positive parameter (see (4)), and this is the reason why the typical
configuration in this regime contains one large polymer of the size of the
system. The fact that the value A4(f) is strictly positive might appear a bit
surprising; but the equation (5) clearly implies this positivity, since the free
energy f(Y, ,) is positive even for 2 =0. We notice that in the case of a
small field the weak convergence of the measures actually implies the
almost Gibbs property with the set of configurations without infinite
polymers being the good set. Indeed, we need to consider for this only
finite-polymer probabilities whose existence is guaranteed by the weak con-
vergence of measures in the thermodynamic limit, and whose non-triviality
is demonstrated in our Theorem 2. In the case of a strong magnetic field,
the limit measure has been shown above to be a point measure.

5. COMMENTS AND CONCLUSIONS

The properties of the examples we have presented, as well as those of
the Fisher—Felderhof cluster models we mentioned in Section 3, imply that,
even if for a weakly Gibbsian measure one can define an almost everywhere
defined interaction, these interactions allow for far more singular behavior
than is allowed in the standard theory. In particular, the strict and strong
convexity properties of the pressure!'®?®) do not hold; as a function of the
magnetic field (or the chemical potential) the pressure is linear on either
a positive or negative half-line. This follows by similar arguments as
are given in [11] for the projection on 2-valued Ising spins of massless
continuous Gaussians (compare [30] and [53]). For these projected
continuous Gaussians at present we do not know if they are weakly
or strongly non-Gibbsian, although their non-Gibbsian character is
robust.“*3¥ These projected continuous Gaussians occur in two rather
different contexts, in the study of entropic repulsion,*” as well as scaling
limits for majority type transformations in high dimensions.'"
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The Fisher—Felderhof models can be seen as one-dimensional almost-
surely finite-range models, but this almost-sure as opposed to a uniform
condition on the interactions allows for much wilder behavior (phase-
transitions, “anti-phase-transitions” and so on, in one-dimensional short-
range models), and in Renormalization Group language it does not seem
plausible that one should try to classify them in one and the same univer-
sality class.

Thus, even if one can define such almost surely defined, not uniformly
convergent interactions, what their existence implies, and what applications
they can be used for, is not clear at present.
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